Modulation of p53 C-terminal acetylation by mdm2, p14ARF, and cytoplasmic SirT2.
نویسندگان
چکیده
Acetylation of C-terminal lysine residues in the p53 tumor suppressor is associated with increased stability and transcription factor activity. The function, protein level, and acetylation of p53 are downregulated by mdm2, which in its turn is inhibited by the p14(ARF) tumor suppressor. Here, we show that p14(ARF) increases the level of p53 acetylated at lysine 382 in a nuclear chromatin-rich fraction. Unexpectedly, this accumulation of p53AcK382 is dramatically enhanced in the presence of ectopic mdm2. In light of these observations, we propose that p14(ARF) increases the binding of p53-mdm2 complexes to chromatin, thereby limiting the access of protein deacetylases to p53. Supporting this notion, we show that p53AcK382 can be deacetylated in the cytoplasm and that sirtuin SirT2 catalyzes this reaction. These results help understand why inhibition of both SirT1 and SirT2 is needed to achieve effective activation of p53 by small-molecule sirtuin inhibitors.
منابع مشابه
Modulation of p53 C-Terminal Acetylation by mdm2, p14, and Cytoplasmic SirT2
Acetylation of C-terminal lysine residues in the p53 tumor suppressor is associated with increased stability and transcription factor activity. The function, protein level, and acetylation of p53 are downregulated by mdm2, which in its turn is inhibited by the p14 tumor suppressor. Here, we show that p14 increases the level of p53 acetylated at lysine 382 in a nuclear chromatin-rich fraction. U...
متن کاملp14ARF silencing by promoter hypermethylation mediates abnormal intracellular localization of MDM2.
The INK4a/ARF locus encodes two distinct tumor suppressors, p16INK4a and p14ARF. Although the contribution of p16INK4a to human tumorigenesis through point mutation, deletion, and hypermethylation has been widely documented, little is known about specific p14ARF lesions and their consequences. Recent data indicate that p14ARF suffers inactivation by promoter hypermethylation in colorectal cance...
متن کاملAcetylation of p53 inhibits its ubiquitination by Mdm2.
In response to DNA damage, the activity of the p53 tumor suppressor is modulated by protein stabilization and post-translational modifications including acetylation. Interestingly, both acetylation and ubiquitination can modify the same lysine residues at the C terminus of p53, implicating a role of acetylation in the regulation of p53 stability. However, the direct effect of acetylation on Mdm...
متن کاملp53 activation in chronic radiation-treated breast cancer cells: regulation of MDM2/p14ARF.
Mammalian cells chronically exposed to ionizing radiation (IR) induce stress response with a tolerance to the subsequent cytotoxicity of IR. Although p53 is well documented in IR response, the signaling network causing p53 activation in chronic IR remains to be identified. Using breast carcinoma MCF+FIR cells that showed a transient radioresistance after exposure chronically to fractionated IR ...
متن کاملMDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation.
MDM2 is a RING domain ubiquitin E3 ligase and a major regulator of the p53 tumor suppressor. MDM2 binds to p53, inactivates p53 transcription function, inhibits p53 acetylation, and promotes p53 degradation. Here, we present evidence that MDM2 interacts with the nuclear corepressor KAP1. The binding is mediated by the N-terminal coiled-coil domain of KAP1 and the central acidic domain of MDM2. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer therapeutics
دوره 12 4 شماره
صفحات -
تاریخ انتشار 2013